Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mitochondrial thiols in the regulation of cell death pathways.

Identifieur interne : 000843 ( Main/Exploration ); précédent : 000842; suivant : 000844

Mitochondrial thiols in the regulation of cell death pathways.

Auteurs : Fei Yin [États-Unis] ; Harsh Sancheti ; Enrique Cadenas

Source :

RBID : pubmed:22530585

Descripteurs français

English descriptors

Abstract

SIGNIFICANCE

Regulation of mitochondrial H(2)O(2) homeostasis and its involvement in the regulation of redox-sensitive signaling and transcriptional pathways is the consequence of the concerted activities of the mitochondrial energy- and redox systems.

RECENT ADVANCES

The energy component of this mitochondrial energy-redox axis entails the formation of reducing equivalents and their flow through the respiratory chain with the consequent electron leak to generate [Formula: see text] and H(2)O(2). The mitochondrial redox component entails the thiol-based antioxidant system, largely accounted for by glutathione- and thioredoxin-based systems that support the activities of glutathione peroxidases, peroxiredoxins, and methionine sulfoxide reductase. The ultimate reductant for these systems is NADPH: mitochondrial sources of NADPH are the nicotinamide nucleotide transhydrogenase, isocitrate dehydrogenase-2, and malic enzyme. NADPH also supports the glutaredoxin activity that regulates the extent of S-glutathionylation of mitochondrial proteins in response to altered redox status.

CRITICAL ISSUES

The integrated network of these mitochondrial thiols constitute a regulatory device involved in the maintenance of steady-state levels of H(2)O(2), mitochondrial and cellular redox and metabolic homeostasis, as well as the modulation of cytosolic redox-sensitive signaling; disturbances of this regulatory device affects transcription, growth, and ultimately influences cell survival/death.

FUTURE DIRECTIONS

The modulation of key mitochondrial thiol proteins, which participate in redox signaling, maintenance of the bioenergetic machinery, oxidative stress responses, and cell death programming, provides a pivotal direction in developing new therapies towards the prevention and treatment of several diseases.


DOI: 10.1089/ars.2012.4639
PubMed: 22530585
PubMed Central: PMC3474184


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mitochondrial thiols in the regulation of cell death pathways.</title>
<author>
<name sortKey="Yin, Fei" sort="Yin, Fei" uniqKey="Yin F" first="Fei" last="Yin">Fei Yin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sancheti, Harsh" sort="Sancheti, Harsh" uniqKey="Sancheti H" first="Harsh" last="Sancheti">Harsh Sancheti</name>
</author>
<author>
<name sortKey="Cadenas, Enrique" sort="Cadenas, Enrique" uniqKey="Cadenas E" first="Enrique" last="Cadenas">Enrique Cadenas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22530585</idno>
<idno type="pmid">22530585</idno>
<idno type="doi">10.1089/ars.2012.4639</idno>
<idno type="pmc">PMC3474184</idno>
<idno type="wicri:Area/Main/Corpus">000846</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000846</idno>
<idno type="wicri:Area/Main/Curation">000846</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000846</idno>
<idno type="wicri:Area/Main/Exploration">000846</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mitochondrial thiols in the regulation of cell death pathways.</title>
<author>
<name sortKey="Yin, Fei" sort="Yin, Fei" uniqKey="Yin F" first="Fei" last="Yin">Fei Yin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sancheti, Harsh" sort="Sancheti, Harsh" uniqKey="Sancheti H" first="Harsh" last="Sancheti">Harsh Sancheti</name>
</author>
<author>
<name sortKey="Cadenas, Enrique" sort="Cadenas, Enrique" uniqKey="Cadenas E" first="Enrique" last="Cadenas">Enrique Cadenas</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cell Death (genetics)</term>
<term>Cell Death (physiology)</term>
<term>Glutathione Peroxidase (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Methionine Sulfoxide Reductases (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (genetics)</term>
<term>Oxidative Stress (physiology)</term>
<term>Peroxiredoxins (metabolism)</term>
<term>Signal Transduction (genetics)</term>
<term>Signal Transduction (physiology)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Glutathione peroxidase (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Methionine Sulfoxide Reductases (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>Mort cellulaire (génétique)</term>
<term>Mort cellulaire (physiologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxirédoxines (métabolisme)</term>
<term>Stress oxydatif (génétique)</term>
<term>Stress oxydatif (physiologie)</term>
<term>Thiols (métabolisme)</term>
<term>Transduction du signal (génétique)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione Peroxidase</term>
<term>Methionine Sulfoxide Reductases</term>
<term>Peroxiredoxins</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Death</term>
<term>Oxidative Stress</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mort cellulaire</term>
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathione peroxidase</term>
<term>Methionine Sulfoxide Reductases</term>
<term>Mitochondries</term>
<term>Peroxirédoxines</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mort cellulaire</term>
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Death</term>
<term>Oxidative Stress</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE</b>
</p>
<p>Regulation of mitochondrial H(2)O(2) homeostasis and its involvement in the regulation of redox-sensitive signaling and transcriptional pathways is the consequence of the concerted activities of the mitochondrial energy- and redox systems.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECENT ADVANCES</b>
</p>
<p>The energy component of this mitochondrial energy-redox axis entails the formation of reducing equivalents and their flow through the respiratory chain with the consequent electron leak to generate [Formula: see text] and H(2)O(2). The mitochondrial redox component entails the thiol-based antioxidant system, largely accounted for by glutathione- and thioredoxin-based systems that support the activities of glutathione peroxidases, peroxiredoxins, and methionine sulfoxide reductase. The ultimate reductant for these systems is NADPH: mitochondrial sources of NADPH are the nicotinamide nucleotide transhydrogenase, isocitrate dehydrogenase-2, and malic enzyme. NADPH also supports the glutaredoxin activity that regulates the extent of S-glutathionylation of mitochondrial proteins in response to altered redox status.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CRITICAL ISSUES</b>
</p>
<p>The integrated network of these mitochondrial thiols constitute a regulatory device involved in the maintenance of steady-state levels of H(2)O(2), mitochondrial and cellular redox and metabolic homeostasis, as well as the modulation of cytosolic redox-sensitive signaling; disturbances of this regulatory device affects transcription, growth, and ultimately influences cell survival/death.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FUTURE DIRECTIONS</b>
</p>
<p>The modulation of key mitochondrial thiol proteins, which participate in redox signaling, maintenance of the bioenergetic machinery, oxidative stress responses, and cell death programming, provides a pivotal direction in developing new therapies towards the prevention and treatment of several diseases.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22530585</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Mitochondrial thiols in the regulation of cell death pathways.</ArticleTitle>
<Pagination>
<MedlinePgn>1714-27</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2012.4639</ELocationID>
<Abstract>
<AbstractText Label="SIGNIFICANCE" NlmCategory="CONCLUSIONS">Regulation of mitochondrial H(2)O(2) homeostasis and its involvement in the regulation of redox-sensitive signaling and transcriptional pathways is the consequence of the concerted activities of the mitochondrial energy- and redox systems.</AbstractText>
<AbstractText Label="RECENT ADVANCES" NlmCategory="BACKGROUND">The energy component of this mitochondrial energy-redox axis entails the formation of reducing equivalents and their flow through the respiratory chain with the consequent electron leak to generate [Formula: see text] and H(2)O(2). The mitochondrial redox component entails the thiol-based antioxidant system, largely accounted for by glutathione- and thioredoxin-based systems that support the activities of glutathione peroxidases, peroxiredoxins, and methionine sulfoxide reductase. The ultimate reductant for these systems is NADPH: mitochondrial sources of NADPH are the nicotinamide nucleotide transhydrogenase, isocitrate dehydrogenase-2, and malic enzyme. NADPH also supports the glutaredoxin activity that regulates the extent of S-glutathionylation of mitochondrial proteins in response to altered redox status.</AbstractText>
<AbstractText Label="CRITICAL ISSUES" NlmCategory="RESULTS">The integrated network of these mitochondrial thiols constitute a regulatory device involved in the maintenance of steady-state levels of H(2)O(2), mitochondrial and cellular redox and metabolic homeostasis, as well as the modulation of cytosolic redox-sensitive signaling; disturbances of this regulatory device affects transcription, growth, and ultimately influences cell survival/death.</AbstractText>
<AbstractText Label="FUTURE DIRECTIONS" NlmCategory="CONCLUSIONS">The modulation of key mitochondrial thiol proteins, which participate in redox signaling, maintenance of the bioenergetic machinery, oxidative stress responses, and cell death programming, provides a pivotal direction in developing new therapies towards the prevention and treatment of several diseases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sancheti</LastName>
<ForeName>Harsh</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cadenas</LastName>
<ForeName>Enrique</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01AG026572</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AG016718</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.-</RegistryNumber>
<NameOfSubstance UI="D051150">Methionine Sulfoxide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.11</RegistryNumber>
<NameOfSubstance UI="C027219">methionine sulfoxide reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051150" MajorTopicYN="N">Methionine Sulfoxide Reductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22530585</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2012.4639</ArticleId>
<ArticleId IdType="pmc">PMC3474184</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3805-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int Suppl. 2007 Aug;(106):S3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2007 Aug;102(4):1369-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17484727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Sep 1;465(1):119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17548047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Oct 5;282(40):29296-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17690097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Nov 1;467(1):95-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17892856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 9;282(45):32640-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Feb;10(2):179-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18020963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Feb 8;283(6):3476-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Mar 1;44(5):882-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18164269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2008 Feb;44(2):252-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2008 Mar 4;1197:159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18234165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Mar 15;44(6):921-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18155672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Mar 15;44(6):1001-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18164270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2008 Mar 15;433(3):219-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18262354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 28;283(13):8211-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18195003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2008 Apr;11(4):476-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Mar;10(3):445-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Jun 1;412(2):e11-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2008 Jun 1;474(1):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18374655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(6):e2459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18560520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2008 Sep;105(1):44-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1534-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18647625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2008 Nov;33(11):2197-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18368484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2008 Dec;7(6):866-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18778410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19057013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Feb 1;46(3):376-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19027064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2009 Feb;64(2):171-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 27;284(13):8470-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Apr 15;419(2):437-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19128239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2009 Apr 15;484(2):214-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19159609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 22;284(21):14476-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19324885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jul 1;421(1):51-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19356151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 14;48(27):6495-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19462976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 24;284(30):19843-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19372221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Nov;11(11):2685-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):937-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19086807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Sep;11(9):2083-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19290777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Jan 15;425(2):313-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20025614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Feb;1797(2):285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19925774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Feb 5;285(6):3997-4005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19959470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Feb 19;140(4):517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 28;285(22):17077-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2008 Jun 1;105(6):2489-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18399961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15681-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Intern Med. 2010 Nov;268(5):432-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20964735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2011 Jan;45(1):3-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20815784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 17;285(51):39646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2011 Feb 4;585(3):574-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2011 Mar;53(3):945-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21319188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Heart J. 2011 May;32(9):1121-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21247928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jun;14(11):2071-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21083423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Jul 1;51(1):107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21466852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21375475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Aug 1;15(3):781-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20919930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Jan 15;52(2):410-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22115789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Mar;1817(3):401-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22198343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1748-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Res Clin Pract. 1999 Sep;45(2-3):101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Jan 1;373(1):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10620338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Feb 24;268(3):921-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10679306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Jun 16;475(2):121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10858501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 7;275(27):20346-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10751410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):4928-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2000 Winter;2(4):801-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11213484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 May 1;30(9):1008-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11316581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Signals Recept. 2001 May-Aug;10(3-4):271-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2001 Jun;8(7):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11375748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 2001 Mar-Apr;21(2A):1129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11396151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 2001;30:421-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11441809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 2001 May-Jun;21(3B):2085-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11497302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Transm Suppl. 2001;(61):223-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11771746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11818574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2002 May;40(6):511-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11850108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;348:93-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11885298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Apr 2;21(7):1695-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11927553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2002 Mar-Apr;383(3-4):347-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12033427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2002 May;81(3):541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12065662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2002 Aug;36(2):326-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12143040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 6;277(36):33242-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2002 Jun;4(3):405-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12215208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parkinsonism Relat Disord. 2002 Sep;8(6):395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12217626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 2002 Dec;30(12):1413-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12433812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2003 Jan;28(1):32-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Feb;23(3):916-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 2002 Nov-Dec;22(6A):3331-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12530083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2003 Mar;124(3):708-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2003 Mar 28;967(1-2):152-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Apr;17(6):717-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12594173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Apr 15;42(14):4235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12680778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 25;300(5619):650-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12714747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 25;300(5619):653-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12714748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 30;278(22):19603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12649289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2003 Jul;1(9):682-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12861054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2003 Jun;5(3):291-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12880484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2003 Aug;86(4):860-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12887684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2003 Sep;38(3):692-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2004 Feb;44(3):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14568558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2004 Jan;45(1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14691149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2004 Jan 1;36(1):65-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14732291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2004 Mar;3(3):205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2004 May 15;36(10):1270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15110392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2004 Jun 11;94(11):1483-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15117824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Jul 30;571(1-3):161-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Jul;10 Suppl:S18-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15298006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2004 Sep 15;24(37):8019-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 1;279(40):41975-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 1964 Apr;44(4):645-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5877511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1975 Sep 8;396(3):427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">240408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 1977 Dec;73(6):1383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">913978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1978 Mar 15;84(2):377-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1980 Mar 7;590(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7356992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Oct 10;255(19):9325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6773965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1983 Apr 15;32(8):1383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6860357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Jul;82(14):4668-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3860816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1988 Aug 15;254(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3052428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1989 Oct;257(4 Pt 1):L163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2572174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 1990;30:603-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2188580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1991 Jan;112(2):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1988462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1991 Feb;87(2):397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1991826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 1990 Dec;56(3):223-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2128525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 Aug 1;288(2):653-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1680311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1992 Jul 6;1101(1):84-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1633179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 11;257(5076):1496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EXS. 1992;62:136-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1450581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1993 Jan-Feb;6(1):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8448354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 1993 Apr;265(1):392-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8474021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer. 1994 Apr 15;73(8):2013-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8156506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1994 May;16(5):621-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8026805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1994 Aug 17;48(4):675-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8080440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1994 Dec;8(15):1285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8001741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Mar 10;267(5203):1456-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7878464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 1995 Aug;22(2):607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7635430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1995 Sep;38(3):357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7668820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 6;277(36):33249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12080052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1996 Feb;10(2):333-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8641567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1996 Mar 4;711(1-2):184-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8680862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1996 Jun;133(5):1053-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8655578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Jul 12;86(1):147-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8689682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 1996;36:83-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8725383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1996 Oct 25;52(8):1147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8937421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jan 31;272(5):2936-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9006939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1997 Apr 21;185(8):1481-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9126928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1998;60:619-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9558479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 1998 May;285(2):608-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 1998 Jun 11;158(1):24-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9667773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 1998 Dec;115(6):1541-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9834283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 22;274(4):2271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9890990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Mar 19;96(6):751-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10102262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1999 Apr 24;826(1):53-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10216196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 3;279(49):50994-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Feb 18;327(3):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jan 21;307(5708):384-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15662004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 4;280(5):3125-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2005 Mar;12(3):255-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15637643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2005 Mar 1;79(5):700-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15678514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10846-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Apr 25;579(11):2327-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15848167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 May-Jun;7(5-6):768-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 15;38(12):1543-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Jun 21;44(24):8634-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):999-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Sep 13;44(36):11986-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16142896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Ther. 2005 Nov-Dec;12(6):529-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2006;46:215-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16402904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2005 Sep;1(4):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16408039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 17;281(11):7384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2006 Apr;7(4):278-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16552414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Mar;1757(3):166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16624252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 May 19;281(20):14400-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2006 Jun;91(2):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2006 Jul;129(Pt 7):1693-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 May-Jun;1757(5-6):721-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16730324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Aug;20(10):1715-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2006 Sep 10;312(15):2806-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16781710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Aug 28;174(5):615-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2006 Sep;4(3):185-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Regul Integr Comp Physiol. 2006 Oct;291(4):R927-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16716247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Nov 1;41(9):1442-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17023271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Nov-Dec;8(11-12):1941-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17034341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2006 Oct 27;163(1-2):54-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2006 Oct 27;163(1-2):38-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16970935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Oct 23;175(2):225-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17060495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):25-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Dec 11;580(28-29):6596-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17113580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jan 5;282(1):792-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17102135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2007 Jan;87(1):315-424</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2007 Feb;292(2):C670-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Apr 13;355(3):715-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2007;8:54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Jan 8;378(2):107-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8549813</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Los Angeles</li>
</settlement>
<orgName>
<li>Université de Californie du Sud</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Cadenas, Enrique" sort="Cadenas, Enrique" uniqKey="Cadenas E" first="Enrique" last="Cadenas">Enrique Cadenas</name>
<name sortKey="Sancheti, Harsh" sort="Sancheti, Harsh" uniqKey="Sancheti H" first="Harsh" last="Sancheti">Harsh Sancheti</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Yin, Fei" sort="Yin, Fei" uniqKey="Yin F" first="Fei" last="Yin">Fei Yin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000843 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000843 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22530585
   |texte=   Mitochondrial thiols in the regulation of cell death pathways.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22530585" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020